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INFORMATION THEORETIC APPROACH TO GEOMETRIC
PROGRAMMING
by
P. Brockett
and

A. Charnes

Abstract

This paper shows how the fundamental geometric inequality lemma of geometric
programming can be obtained immediately from information theoretic methods. This
results in a drastic simplification of the proof and points the way to other connections

between information theory and geometric programming
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Introduction

This note shows how information theoretic methods can be used to obtain simply
the fundamental geometric inequality lemma. This lemma is the base used by Duffin,
Peterson and Zener (1967) for proving their duality results for geometric programming,
and its proof occupies three pages in their book. Their method of proof is a technically
impressive procedure. However to illnstrate the power of information theoretic methods
we shall give a simple proof of this fundamental inequality. The approach we shall take is
to show the connection between geometric programming and constrained Khinchine-
Kullback-Leibler, or minimum discrimination information (MDI) estimation. Complete
duality states for MDI estimation are known (c.f. Brockett, Charnes and Cooper (1980),
Charnes, Cooper and Seiford (1978), Chames and Cooper (1974a,b)). Additionally, in
the usual duality state of interest, the statistical properties of the solution are known,
facilitating sensitivity analysis. The computation of MDI estimation is easily performed
using an unconstrained dual convex program involving only linear and exponential

functions.

The information theoretic approach is based upon the mean information for
discriminating between two densities f] and f2 (relative to some fixed dominating measure
A). The mean information for discrimination in favor of f] against f; is defined by (c.f.

Kullback (1959)).
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Applying Jensen's inequality to the convex function h(y) = ylny with the random variable

fi(X
Y = fl§X; and assuming that X has probability measure f2(x) A(dx) yields the result




I(f1!f2) 2 0 with I(f!f) = 0 if and only if f1 = f; a.s. [A]. Amazingly, this is the only

result needed to give a proof to the so-called geometric inequality (c.f. Duffin, Peterson and

Zener (1967) pg 110). As usual, OIn0 is taken to be O.
Lemma 1 (Geometric Inequality-Duffin, Peterson and Zener (1967))

Suppose x € X', and § € R with §; 2 0, i
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Then
2xi0; + (Zd)In(TY;) < (Xd;)In(Zexp(xi}) + Ld;ln d;

with equality if and only if there exists a non-negative number B such that
8i = Bexp{x;},i=1,2,..,n.

Proof: Consider two probability distributions P and Q over {1,2,....,n} given by

pi=_8.i_andqi= expﬁ}_.
Eai Zexp {Xi,

Then since I(PIQ) = 0, and consequently

0 < (=5)1(PQ) = ZSilnI 3{zexy {"i)L‘ = (28,)1n (zexp {xi}) + X5,1n8; -

{(ESiXZCXP { Xi}) ’

‘Eﬁi)ln(ZSi) - Z3;x; with equality if and only if p; = q;, i.e., §; = Bexp {x;},

i=102,

Q.E.D.
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